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NATIONAL ADVISORY COMBITTEE FOR AERONAUTICS

TECHNICAL NOTE NO, 1012

VELOCITY DISTRIBUTION ON WING SECTIONS OF ARBITRARY SHAPE

IN COMPRESSIBLE POTENTIAL FLOW
Il - SUBSONIC SYMMETRIC ADIABATIC FLOWS

By Lipman Bers

SUMMARY

This paper extends the method of computing the pressure
distridbution along a symmertical profile of arbitrary shape
glven in NACA Technical XNote No. 1006 under the assumption

of a linearized pressure~volume relation to the case

of an

everywhere subsonic flow satisfying the rigorous adiabatic

equation of state. BEither the stream Mach number or
maximum local Mach number may be prescribed.

the

The actual applicability of the method depends upon the
development of efficient procedures for numerical integra-
tion of linear partial differential equations with variable

coefficlents,

Tables and graphs of functione nesded for the computa-
tion are given, and a velocity correction formuls proposed

by Garrick and Kaplan is discussed.

INTRODUCTION

In a recent paper {(reference 1) the author presented an
effective method of computing the velocity distribution along

a symmetricel profile of arbitrary given shape under

the as~

sumption that the potential compressible flow past the pro-

file obeys the so-called linearized pressure~density
In this paper this method is extended to the case of
labatic pressure-density relation which actual flows
with a high degree of asccuracy. In fact, the method

relation.
the ad-
satisfy
presented
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here is applicable to any empirically or theoretically given
pressure~density relation, provided the flow remeins every-
where subsonie,

The computational labor involved in applying this method
ls conslderably greater than in the case of the linearized
pPressure~density relation, The actual computations could
hardly be attempted wlthout using either asutomaiioc occomputing
machines or electrical modelsgs., 1In fact, at the present state
of mathematical analysis, 1%t i1s doubitful whether relliable
theoretlcal results on pressure digtridbutions for high sub-
sonic speeds and on the valuee of the critical Mach number
for various profiles could be obtained by any method without
extensive numerical computations, On the other hand, the
Present ldeas concerning what constitutes difficult compute-
tions wlll doubtless undergo a very radical change in the near
future due t0 the development of modern sutomatic computing
machines,

In the author's opinion, the merit of the present method
lies in the fact that 1% eliminates the mathematical diffi-
culties peculiar %o the fluid dynamical problem considered
and reduces the solutlon of this problem to the numerical
integration of a linear partial differential equation, This
latter problem is of prime importance to all branches 6f ap-
plied mathematics and is the subject of many investigations,

The present method is based upon the application of a
transformation whieh for compressible flows takes the place
of conformal mapping. This transformation was introduced 1in
a previous paper. See reference 2.) The pressure distribu-
tlon problem ie firet reduced to the determination of a funo-
tion f(w) defining a point-to-point correspondence between
the prescribed profile and a circle, Then it is shown that
this function satisfies a functicnsl equation of the form
f = F(£f) where F is a certain functional operator, In
order to determine f, & trial solution fy is chosen, and
the functions £, = £(£f,), £z = F(f;),... are computed. On
the basis of computations carried out for a simple special
case (Y = «1), it may be expected that the sequence f,,
fz,.+.+« 1rapidly converges toward the desired function f(w),
The computation of the transform F(f,) involves an integra-

tion of & linear partlal differential equation previously
mentioned,

On the basis of the theoretical results obtained, a dis-
cusslon of a "veloocity correction formula' proposed by
Gerrick and Kaplan is given. ——
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In connection with this investigation certain computa-
tions were carried out by the Computation Project of the
Bureau of Ships at Harvard University. The author expresses
his sincere gratitude to the Bureau of Ships, to Commander
H. H. Aiken, officer-in-charge of the project, and to Lieu-~
tenant H., A, Arnold and Mr, R, R, Seeber, Jr., who were in
charge of the computations, The author also is indebted to
Mr, Charles Saltzer for competent assistance.

This investigation, conducted at Brown University, was

gponsored by and conducted with the financial assistance of
the National Advisory Oommittee for Aeronautics.

SYMBOLS

A, B, b constants (appendix I)

A(g), B(¢) guxiliary functions defined by eguation (36)

a speed of sound

¢,C, posltive constants

as non~-Euclidean length element

B(?) domain exterior to the profile P

F[f(w‘),w] functional transformaetion defined in section 8

f(w) function defining the mapping of the circle into
the profile

ik coefficients of the metric generated by the flow

H({) harmonic function defined by equations (42) and
(43)

h(w) function defined by equation (40)

M Mach number

P profile in the z-plane

Py lattice points in the Z-plane (appendix I)

b pressure
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Q dimensionless gpeed q/a° ag function of q**

Q2 dimensionless speed gqf/a, as function of g™

q speed

g™ distorted speed

r modulus of {

8 length of the curve P

8 arc length measured along the profile

T function defined by equation (4)

w, v velocity components

u*, v* components of the distorted velocity

w complex velocity

wk distorted velocliy

X, ¥ Cartesian coordinates in the 2z-plane

X, ¥ Cartesian coordinates in the Z~plane

Z complex variable in the plane of the flow

21, Zp leading and trailing edges

2 euxiliary complex variable

a angle at the trailing edge

By coefficients of the difference egquation
(appendix I)

ﬁij coefficients of the Liebmann transformation

Y exponent in the pressure-~density relation

¢ complex variable in the plane of the circle

8 slope of the profile P

] angle between the veloclty vector and the x-axis
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AM) value of gq* for M = Mg

E,m Cartesian coordinates in the l-plane

P density

o dimensionless length parameter or the profile

T argument of §

X euxiliary function defined by equation (35)

o veloclity potential

d function proportional to the velocity potential

U function proportional to the sftream function

w argument of a point on the circle |§] = 1

¢ g partial derivative of ( ) with respect to x
(similarly for y, £, n, ete.)

C g value of ( ) at a stagnation point

¢ J value of ( ) at infinity

( Jpax maximum of ( ) 4in the domain considered

(™) boundary value of ( )

ANALYSIS

l, Bagic Relations

L steady two-dimensional potential flow of a compressi-
ble fluid 1s characterized by the quantities: p (pressure),
p (density), q (local speed), and © (angle between the
veloclity vector and some fixed direction, say the direction

of the x-axis). The components of the velocity vector are
glven by

u = g cos 0, v = q sin ©

the complex quantity
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R

w=u=-1lv = qe‘ie

£}

is called the (conjugate) complex velocity. Pressure and
density are connected by the adiasbatic relation

v v
p/p = p./P,

where the subscript o refers to the fluid at a stagnation
point. The exponent Y is a constent; for air Y = 1,405,
Ingstead of the speed q %t is convenient to use the dimen-
slonless quantities

2 and M = 2
o a
where
dp
a = E;

is the speed of sound.
B Bernoulli's theorem implies the relations

1

Y

Yl
Y -1 g )
o= p (1 - _____> (1)
o) ) aoa
Y
Y - 1 ¢° Y2
P =P 1 - —————-—-—)
o] ( 2 aoa
= Cla/aoa
M o= 3 (2)
1 - Y -1 a°
2 82

It will be convenient to use the following two func-
tions q* and T of the speed which are defined in the

subsonic range by
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qQ
2
q*:expf 1—.M9'.9_ (3)
qQ
and s
P
T=—9- l-—Ma (4)
)
Here
2

is the critical speed for which M = 1, 4 simple computation
vields '

o Ya
Y+1 ¢° /' N-1 g® Loy q®

/ 3 /
q
Lo e e f1 = —— Yy lo—m— =t/ 1= —=
J 2 & 2 ag® | W 2 a, 2 a,° (s)
Y

£ :
Y+1 q® Y~1 q® Y+1 qf

RS yl/f___q _/L___f-_é_
2 a, 2 ag® 2 ag

L
Y+ 1 q®
B 2 a2
T = o P (6)
- 3 1
1__Y 1 qa
2 8,4
where
Y, = Y+ 1 . o
Y-1

It is clear that the "distorted speed" q* 18 an increasing
function of the dimensionless quantity q/a0 and that

Q¥ = 0 for q = O, qQ* =1 for q = qg

Hence all quantities characterizing the flow may be expressed
as functlions of q%°; in particular
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qg = a.oQ(q*z) T = T(q*3) . (1)

The functions discussed in this section are tebulated
(for » = 1.405) 1in tables 1 +to 4t and plotted in figures 1
to 3. Tebles 1 and 2 aon which the other ccmputations were
based wers taken over frum tebles computed on the I. B. M.
Automatic Sequence Controlled Calculator. (See reference 3.)

The camplex function

W = g* o~1f (8)

is celled the distorted velocity. The knowledge of w¥ im-
plies that of w, slnce

¥ . _ 2 w¥
: —Q.(f‘W*[) W

(o]

Remark 1: For an isothermal flow (A = 1) the preced-
ing formuwlas must be replaced by the following

_qz/ 2852 , _qz/ 28'02

P = pye D = Po®

M= q/ao

r\/.l - q%/ag2
)

Remark 2: The preceding formmalas, with the exception of
those for P, remain valid if the pressure-density relation
iz aseumed in the slightly more general form
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p = hp' + B

where A and B are constants.

Remark Z; The method described in this report can be
applied to any pressure-~density relation, provided the
flow remains subsonic,

2. The Boundary Value Problem

Consider a symmetrical profile P in the plane of the
complex variable z = x + iy, It will be assumed that the
x-axis coincides with the axis of symmetry of the profile and
that the trailing edge zp 1is to the right. Let S be the

length of the curve P and 8 the arc length measured along
this curve from the poiht 2zp in the counterclockwise direc-
tion. The points on the profile may be characterized by the
dimensionless paremeter

(9)

o = 27

wjn

Thug o© = O oorresponds to zp and © = m t0 the leading
edge z.. Furthermore, let ©®(c) denote the slope of P

at a point corresponding to o, This angle ig defined as

the positive angle by which the positive x-axls must be
turned to move it parallel to the tangent vector %0 P point~-
ing in the direction of increasing Oo. (See fig, 6.) Thus
the function ©(o) depends only upon the shape of P and

@(0) = m - af2, ®(n) = 3nf2, ©(2m) = 2u + o/23 (10)

where o is the angle at the trailing edge (O < a S,

Furthermore,
elam - o) = 8n - 8(c) (11)
The equation of the profile P can be written in the form

o
!
g = zqp + Sb/n ei@(c )dc', 0 5o < on (12)

0
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Consider now & steady subsonic circulation-free poten-
tial flow of a compressible fluid past P. DLet a.p(x,y)
be the velocity potential, Then
oo 22 (13)

u = ag %% and v = >y

q 1is given by

and the magnitude of the velocity vector

- oo (30 (3 (4)

s§0 that the continuity equation

£ 9% (15)
ax P, 0x By po by
becomes a nonlinear partial differential equation for .
In fact, this equation may be written in the form
Y+ 1 2 Y- 1 2
(1 - ter -l )cpxx - WO
Y-1 a Y+ 1 2
+ (1 - P - ® P,y = O (16)
( 2 x 2 v > Yy
where subscripts denote partial differentiation. TFor the
special case Y = ~1, +this becomes the equation of a minimal
surface.

The velocity potential o(x,y) is determined as the
(one-valued) solution of this differentisal equation satisfy-
ing certain gsuxiliary conditions. The first of these states
that the undisturbed flow has the positive x-direction. It
may be written in the form

dep . 0Q
lim Sx >0, llm- -é-y-— = 0 (17)
Z~>

Z -~ o
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Since

tan6=ﬁ-=%-§—f (18)

this condition 1s equivalent to the following

1im 6 = 0 (19)

2 - o

The second condition is a boundary condlition expressing
the fact that the profile P 19 a streamline:

39 _ 0 on P (20)
3n

where 3/3n denotes differentistion in the normal direction.
In view of the symmetry of the flow this condition may he
restated as follows

@ - ‘fupper :
on the bank of P (21)
® + 21 1‘lower

[an)
L[}

Finally, a condition is needed which determines the
magnitude of the speeds involved. This can be done in two
ways. It is possible t0 prescribe the epeed g oFf the

undisturbed flow,. The condition then reads

)
lin —2 = 1w (22)
zZ—w oo O ag
or
1im q = q (28)
im - e

Alternatively, 1% is possible to prescribe the maximum local
speeds Amgx* The condition reads

d\3 2 g
nax /(.E) + (.a_?i = _Rax (24)
ox oy ag, .
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or
max q = q.. (25)

In the first case, the stream Mach number Mo° is prescribed,
in the second, the maximum local Mach number Mp,x. In the
second case, the condition imposed on ¢ has the character
of a boundary condition, since the maximum speed is attained
at the boundary. (The proof of this statement will be found
in refegence 4; it also follows from the considerations of
gec. 4.

In the following, this boundary value problem will be
reduced t0 a mapping problen,

3. Mapping of the Profile into a Circle

The hodograph of the compressible flow ground P is the
domain in the w-plane (w = u - iv) into which the domsin
E(P) exterior to P is tesken by the transformation

= a (3% .4 239
W= e 3T i >y (286)

In the case of a symmetrical flow the hodograph is a doubly
covered Riemann surface with a branch point at w = g, as
shown in figure 5, This surface is transformed into the "dis~-
torted hodograph" by the transformation

w* = q*(IWI/ao)-JL— (27)

fwl

where q* is the function of gq = Iw] defined by (3).
Finally, the distorted hodograph is mapped conformally into

the domain | {l >1 of the auxiliary {-plane by an analytic
funetion ¢{(w*) satisfying the conditions

d
C== dwg‘ >0 for w* = g%, = q*(q,/a,)

In this way a transformation

t = t(x,y), n=n(x,y) (28)
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of the domain B(P) into the domain |{j > 1 1is obtained.
It 1isa seen that the points

zZ = &, Z=ZL| Z=ZT

are taken 1lnto the points
£=mi §="1-§=1

respectively, and that the horizontal direction at infinity
is preserved by the mappling?

1im 28 5 0, 1lim %& = 0, 1lim 9% = 0, 1lim of .0 (a29)

z-»c OX > Z —» o z— o OV

The resulting mapping of the profile P into the unit
circle can be described by means of a function

o= f£(w) (30)

such that a point =2 of P corresponding to the parameter
value o = f(W) 4is taken into the point { = ei¥, The func-
tion (30) is an increasing function and

£(0) = 0, £f(2n) = 2n (31)

Furthermore, by ressons of symmetry
f(2n - ) = 8r - £{o) (32)
80 that
f(n) = mn (33)

It will be shown that the knowledge of the function f£{w)
implies that of the velocity and pressure distribution along
P,

Remgrk 1: It has been shown (reference 2) that the
transformation (28) is conformal with respect to the following
Riemann metriec:
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as® = gy, ax® + 2g,2dxdy + goady” (34)

where

1l - M2 sina e h

€11

€12 = M° sin 6 cos 8 (35)

——

l - M8 cosa

€aa

°

It is instructive to consider three special cases, Tor
an infinitely slow flow (i,e,, for an incompressible fluid)
M =0 and d45° = d4x® + dy®, Then the mapping Just constructed
is the standard conformal mapping of a profile into a circle,
For a uniform flow in the x-direction 6 = 0, M 1is constant
and 485% = dx® + (1 - M®)3y®. 7The introduction of the metric
(34) is equivalent to the well known Prandtl-Glauert contrac-
tion. Finally, in the case Y = =1, the mapping (28) coin-
cides wlth the mapping defined by the equation

constant <§ + %) = @+ 1Y

whgre Y is the stream function of the flow, (See reference
1.

4, Computation of the Velocity in the {~Plane
From the way in which the mapping of the z-plane into

the §-plane has been defined it follows that the distorted “"
veloclty

W* = q*e-ie
is a one~valued regular analytic function of { for {i[ > 1,
It vanishes only for §{ = =1 and (unless a = 0) for = 1,

Moreover, the function
w.§1+m/ﬂ

x(8) = :
(£ + 1)(t - 1)/
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i1s continuous for ¢l €< 1 and is nowhere in this domain
equal to either zero or infinity. (For the proof of this
last assertion see reference 1, sec. 3.)

Set
log X = & + iB (386)

Then A + 1B and hence 3B = 1A are regular one-valued ana-
lytic functions, Hence A{{) may be computed in terms of

the boundary values of the function B({)., For ILI > 1
this is done by means of the Poisson-Schwarz integral formula

B(E) - 1a(l) = - _../ .._._...__QB( “Yaw « 14(o)

which implies that

aTr

-1 r sin{(7T-w) iw o - iT

A(l) ﬂ[ Y - Ble )+ A(x), ({ = rTe” ")
For |{] =1 the formula to be used reads

alel®) = - g—f {s(ei“*”) iw—”)} cot I aT + Ale)

(See, for instance, reference 5, p. 243,) Of course, it is
also goesible to determine first A(el®) and then to compute

A(reiT), r > 1 by the formule
2T
1 - r2
AlreiT) = - Lo AleiW)gw
2 1~ 2r cos(T-w)+r® )

o

If the value of 0 at a point of _P ocorresponding to
the parameter value o is denoted dy 6(g),
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B{elW)a - B[2(w)] - arg(1+ oiW) "?-:q" arg(eiWa 1)+ (l+ %)w (37)

and

w/2 for O<uw<mn

arg(1 + oiW) ={

w/3+m for m< w< 2w

iw w T
a 5( ) 5 P

Furthermore, by virtue of (356) and (21)

~ [f(w)] -nm for O0O<w<m
5 e = { b

[f(W)] - 2 for m < w< 2n

Also

T
(¢+1)(f-1)

gl"'&,/ﬂ'-

log q* = A + log

and if the value of ¢q* at a point of P Dbelonging to the

Parameter value ¢ 1is desnoted dy g*(o), then -
1+& 111
log- g*[£(w)] = A(e®™) + 1o0g {2 cos -‘29 gin g-’ i

By noting that A(x) equals the logarithm of the value
6f the distorted speed at infinity and combining the preced-
ing formulas, the following expressions for q% are obtained: o

w
cos —
2

Lo
sin i"-’r eh(w) (39)

)
T )] = o 2 T 2

where

T
b{w) =-23:1-/‘ {C—)[f(w+ )] - glflw- T)]}.eot -21 at  (40)
(o]
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and #

p——

§1+a/n

where the (harmonic) function H({) is given by either of the
two equivalent formulas:

am

= 1 r sin(T - w) ,{ _atm }d
M n'[l‘-ar cos(T~w)+ r? oLz w)) am (42)

or
81T

H({) = « i-f 1 -z h(w)dw (43)

1-~2r cos(T~w)+ r?

In both cases ¢ = reiT,

If in the original boundary value problem the value of
the speed at infinity has been prescribed, then q*, ie a

known constant. If, however, the value of the maximum local
speed is prescribed, then a*, ie determined from the rela-

tion
1+
» &*

denotes the (given) maximum local distorted speed,

sin ..2“:’.'% eh(w)} (44)

cos QI
2

=
qmax
The function 8 also is uniquely determined by f£(w),

for being a harmoniec function of £ and 1N and gatisfying
conditions (38) it is given by the formula

TT

e(g)=- —l—f 1= r® {@[f(w)] - n} dw
M 1a2r cos(T- w)+ r?

am

- 1 1 - r® _ {@[f(w)J - aﬂ} dw (45)

2 ;i l=2r con(Tww)+ r3
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It should be observed that

1im 6 = O . (a8)
(o o

No difficulties are involved in computing the above-
mentioned functions since the integral defining the function
h(w) 1s a proper Riemann integral, In fact, for T = 0 the
integrand is equal to -

401 [r(w)] 1t (w) - 2latm)

In computing this integral the expression in the braces must
be treated as a periodic function of W with the pericd 2w,

After q®* and € bhave been determined the quantities
a/ag, T, p, P, and gsx can be computed as functions of

¢ and n. In particular, the boundary values .€(6Y_ ef ¢
are glven by

T Le)] = ag Q {a* cf«ma}

Thus the statement that the knowledge of the function ¢ = f(w)
vields the pressure distribution along B 1is verified.

In the preceding considerations no properties of the
function f£(w) except the boundary conditions (31) were used.
Therefore the following statement is wvalid.

To every function f(w) (which is not necessarily the
mapping function) satiefying the conditions Ff(0) = 0 agnd
f(2m) = 2w there corresponds an analytic function w* =q*e‘ie
defined by equations (39) to (45). This function is uniguely
determined by f(W), the function (o) which depends only
upon the shape of the profile P and either of the two
%ZZ??eters q"‘a° and q;ax which are connected by relation

If lw*l < 1 everywhere, then the functions aq/a, &and

T also can be computed as functions of . This will always
be the case if the prescribed value of qﬁax < 1.

If the function f£(w) also satisfies condition (31) (as
the actual mapping function does), then the analytic function
w* will satisfy the condition
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we (8) = w* () (47)

(The bar denotes the conjugate complex quantity,.,) In this
case the function T = T(f,n) ecorresponding to f(w) will
possess & symmetry with respect to the fwaxis?

T(g,"n) = T(g.ﬂ) (48)

In the following condition (31) will always be asgumed,

5, Computation of the Potential in the {~Plane

It is known tnat the potential © considered as a furc-
tiop of u* and v* (w* = u* - iv*) gatisfies the linear
partial differsential equation .

9 3-5°p>+ 0o (L) .o (49)
ou* \7 3u* ov* \T dv*

(See reference 2, P, 1B.) This elliptic equation is invariant
with respect to conformal transformation so that P considered
as a funetion defined in the {-~plane satisfies the equatien

D /L dpn, B /1 3wy _
B£<T5>+an T an) " ° (50)

To determine the beundary vonditions satisfied by vs}
‘obsesrve that by virtue of the canformality of the mappiig
(28) with respect to the metric (34) a line element normal
to the profile P 1is taken into a line element normal to the
circle l§| = 1, Hence dondition (30) implies that in the
{-plane

2. ®o(r cos T, r sin T) = 0 (51)
or r =1
Next
o9 _ 3% E£.+ op an, 39 393t + 999N
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From (17) and (29) it follows that

N
3P _ 4= 14
pa -2 n 3t) >0
? (52)
1im EP—= 9]
§—> « 3N
S

From the symmetry of the flow (in fact, from condition (48))
it also follows that

pl(t,-n) = o(t,n) (63)

Now let &(t,n) denote the (one-valued) solution of equa-
tion (50) satisfying the conditions

25 =0 (54)
or r =1
and
lim 9 1, 1im %2 . 0 (65)
§—> ch §_>cob‘n

Then there exists a positive constant C such that

® =09 (56)

This follows from the linearity and homogeneity of the differ-
ential equations and the boundary cornditions,

The existence of the funetion ¢ 1is assured by known
theorems and in principle ¢ can be computed numerically
with any desired degree of accuracy. The sctual computation
of the function @ however, presents counsiderable diffi-
culties., A brief discussion of the various possibilities
will be found in appendix I. For the method described in
this report it is irrelevant which numerical or mechanical
device 1s actually used for solving eauation (50),
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Thus it is seen that the knowledge of the function f(w)
permlts the computation of the potential ¢ as a function
of [, wexcept for a constant positive factor.

Furthermore, %o every function o = f(w) satisfying _
conditions (B31) and (32) there corresponds a function @(E,n)
satlsfying the condition )

@ (£,-n) = o(&,n) (57)

namely, the solution of (50) under the conditions (54) and
(66) where T = T(|w*/2®) and w* = q%*e~1® 1is the analytic
function associasted with f£(w) by means of equations (39) to
(45). The function © can be computed if iw*] nowhere
exceeds unity and is determined by the shape function 6 (o)
and by either of the two parameters q*, or qﬁax. The

actual determination of @ requires the numerical integra-
tion of a linear partial differential equation in a domain
independent of the particular problem.

6, The Functional Bquation Satisfied by f£(w)

Along the profile P the potential ¢ and the speed
q are connected by the relation

X

= g
a o as

or

o] - 2

dw‘

If the function @ defined in the previous section ie intro-
duced, this can be written in the form

aoG

@] aw (8)

—
=

L 5 (cos w, sin W)
aw

Setting

d(cos w, sin w) = J(w) (69)
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oo [l
° §Te(w)]

o]

integration ylelds

But s = o§/2m, § = Q(§*°), and o = f(w),

Therefore

Papw)
_ 8¢ ad (w
$@) = 2nd Ta@n

where

g = o {g* te@2®}

By setting W = 2mr it is seen that

2T
56 _ an / dow)
2m Y, Qw)

g0 that finally

(60)

Since starting from the function f{(w) it is_possible
to compute q*({) and therefore also q* [f(w)], Qlw),
T(€,n) and d, equation (60) is a functional equation satis-
fied by the function f(w)
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7. EBquivalence of the Functional Equation
and the Boundary Value Problem

In this section it will be shown that a solution of the
functional equation actually yields a solution of the bound-
ary value problem formulated in section 2. In the same time
it will be shown how the knowledge of the function f(w)
permits the computation of the velocity distribution at
points not situated on the profile P.

In the following it is assumed that a function f(W)
satisfying (60) is known. This already implies that f 1ie
an increasing function (since its derivative is necesgarily
nonenegative) and that the analytic function w* = gq* e~
associated with f(w) (ef. sec. 4) satisfies the condition

w¥ < 1 (61)
||

The function f(W) determines functions q/ag, M, P/Po.
T, & as functions of £ and n. Set

sin 8

cfao os B @p + ———— ¢, ) 4t
— cos
Y A )

M
n

. _8in 8
+ (cos 6 ¢ - Al ®€> an

VEUSETE

«
L]

Ob/nag {(sin 8 ®E ~'7%§§=§§ @ﬁ) at
L

cos ©
+ (sin B <Dn+m ¢:g> an
/

where & 1s the function defined in section 5, subscripts
denote partial differentiation, and O is g positive constant,
These line integrals are independent of the path, (For the
proof, see appendix II, gec, A). Hence eguation (62) defines
8 transformation :
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x = x(t,n), y = y(&,n) (63)

This trensformation can also be written in the form

x + 1y

N
"

cf&& eif g - ic/_ﬁg_ ol6 (or) at -3¢ an) (64)
» q ” q ’1 - Ma

In order to compute the image of the circle ,§| = 1 wunder
thisg transformation the integration may be performed along
this circle. But on the eircle the normal derivative of @
vanishes so that O it - Oy dn = ¢ and

"O[slw)] - ® for O<w<w

g =
Ofr(w)] ~ 2 for m<w<mn
o = G(w)
q
f—- Ia'l dw for 0 < W<
a0 = ~ :
\+ |8 aw for m < w< 3w

80 that the image of |[f| = 1 1is the curve

AW I
z = C/ 10 [flw')] l_d__.____‘b (w) , O

% Qwr)

IA

w< 2n

i
z=c1/ el® Le(wt)] f{w') qw, 0 ws< a2n

)
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where €, 1s a new positive constant. Thus, setting
g = f£{w)

)

z = Gl\/n ei@(c') dot, 0 o< 2 (65)

o]

Comparison of this with (12) shows that (62) takes the circle

Jt| = 1 into the profile P, and, since f(w) is an in-
creasing function, the mapping is one~to-one, The constant
0, can be determined from the length of P, since this

length is equal to

S =0, 2m (66)

Next, the Jacobian of the transformation (62) equals

— d(x,y) _ &20 1 { a2 3}
O I o + Oy (67)

It can be shown that the gradient of & does not vanish for
|£] > 1. Hence the Jacobian is positive for || > 1. Fi-
nally, by virtue of (55) and (46) as {-—» o,

ox a, Ox dy oy ag, 1

— s 0 2 = 0, — — 0, — 6 — ———— (68)

Y P T Y " T e, A wE

where M_ 1is the value of M at { = =, Hence . —
lim z = o (69)
{—e

From the foregoing statemente it follows that the trans-
formation (62) yields a one-to~one mapping of the domain
[6f > 1 into the domaln E(P). Hence all functions defined
in the {-plane q/a,, 8, &, and so forth, can be considered
?s gunctions of x and y. The transformation inverse to
63

f, = g(xDY)l n = 'n(X.Y)
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is conformal with respect to the metric (34), The proof of
this assertion will be found in appendix II, section B,
Since ¢ satisfies equation (50) it follows from a lemma
proved in a previous paper (reference 2; appendix, converse
to Lemma 1) that in the z-plane ¢ satisfies equation (15)
considered as a linear differential equation (since p/po

is a known function in the f-plane and therefore also in
the z-plane).

However, the relations

o‘
(a7
o
o/
L]

4 dax g. dy ot

[«%

39 3 Ox + 0d oy
on dx on oy dn

together with (62) yield the equations

ag j— sin B cosg ©
¢ 2 [cos 9¢§+-——~ Qn]¢k+ [ J @y

l - Ma gsin 9¢§ [ —-———l = _M._a @rr]

& in 6 cog @
1) C—Q(cos 00 - =L " 3, |0+ [ein 80, + —2— Ds |d
" “‘L[ N iow EE N i

Solving for & and ¢ yields

¢

x v
& = i a cos © ., = La sin 6
x C a, ’ y G ag
Thus
u = q cos 6, v = q sin ©

are the components of the gradient of the function

ao,®(x,y) = C ay @
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The function ¢ satisfies equation (15) considered as a non-

linear equation, that is, it satisfies equation (16), Thus

¢ 1s the potential of a compressible flow.in the z-plane and

u - iv = q e-18 i1ts complex velocity. S

It is now easy to verify thet ¢ also satisfies the
boundary conditions, In fact, along P the angle 6 coin-
cides with the slope of the profile and &t infinity 6 van-~
ishes. TFinally, q,_ takes the value Qqg = a, (q*,2) at
infinity and its maeximum is Qmax = 20 Q(q*amax).

The foregoing discussion contains both the procof of the o
equlvalence between the boundary value problem and the fune-
tional equation (60), and the description of a method permit-
ting the computation of the flow in the whole domain E(P)
once the function f(w) 4s known,

8. Solution of the Functional Equation

In the preceding sections the determination of the pres-
sure distribution along a given symmetrical profile P has
been reduced to the determination of a function o = f(w)
satiefying the conditions

£(0) = O, £f(2n) = 2n
(70)

£f{(3m -« o) = 2n -~ f(o)

and the functional equation (60)., The form of this equation o
suggests the application of the iteration method.

Let f(w) be any function satisfying conditions (70),
By use of this function the functions w*, J{w), T and &(w)
can be computed (cf. secs, 4 and 5) provided the function w*
satisfies the condition Jw* < 1, (This will always be the
case if gqf . is prescribed.) Therefore the right-hand side

of (60) can be computed and will represent an increasing
function g(w) which will again satisfy conditions (70),
This function will be denoted by o -

glw) = F [£(w), w] (71)
With thie notation equation (60) reads
f(w) = F [flw'), w] (72)
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Thus the problem consists of finding a fixed point of the
functional transformation F,

Now let f,y(w) (epproximation of order zero) be a
function satisfying conditions (70) and set

~
falw) = F [£f,(w'), w]
fa(w) = F [£)(wr), w]

;> (73)
fo(w) = F [fn_l(w ), w]
s e e e e s e e e e B

If the sequence fqo(w), £, (w), , . ., fo{w), . . , converges
to a function f£(w) and if 1im F(,) = F(f), then z(W) 1ig
a solution of equation (60), e e

It seems to be rather difficult to prove rigorously the
convergence of this method. However, on the basis of computa-
tions carried out for the special case Y = -1 =g fairly
rapid convergence of the iterations seems probable, and it IO
night be expected that good results will be obtained after a
few steps. The real difficulty in computing the successive
approximations lies in the numerical integration of the dif-
ferential equation satisfied by §. (OFf. appendix I.) Thus
the practical applicability of this method hinges upon the
development of efficient methods for solving this problem,
which, of course, is of prime importance for practically all
branches of engineering mathematics.

It should be noted that the .iteration process may break
down if in the original boundary value problem the value of
@, 18 prescribed, This cannot happen if the value of Qmax

is prescribved,

The rapidity of the convergence will depend upon the
appropriate choice of the function fo(w) (the approxima-
tion of order zero). Several possibilities of choosing £,
are listed in order of prefereance.
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(1) GChoose for £, the solution of equation (60) pre-
viously obtained for a profile P! close to the desired pro-
file and for a value of q', (or q'p.y) close to the desired
value of qo (or qp o).

(2) Choose for fo the solution of equation (60) for L
the special case Y = =1. (Cf. next sec.)

(3) Choose for fo the function resulting from the con-
formal mapping of the profile into a circle.

(4) Tor thin profiles fy(w) may be chosen as

fo(w) = % (1 - cos w), ofwegw
(74)
fo(2m - w) = 2m - £(w)

Note that (3) and @) are special cases of (1} (In the
case (3) P! = P and qly= O, 1in the case (4) P' is a
straight segment and gql, = 0.) _ e e

9, Comparison with the Case Y = -1

If it is assumed that the fluld obeys the so-cﬁlled lin-
earized pressure-density relation of Chaplygin-Kdrmédn-Tsien
(references 4, 6, and 7), Y = -1 and equations (1), (2),

and (4) yield

.a_o.=.]_-.. _l_- L
q 2 (q* 1 >

It is seen that in this case the function ¢ becomes inde-
pendent of the particular function f(w). 1In fact,

g B e —

= + ———
= ¢ 2 4

80 that
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d (W) = 2 cos w

Equation (60) takes the form of an integral equation treated
in a previous paper (reference 1, equation (51))., Since &
does not have to be determined, only functions of one vari-
able enter in the problem and the computational labor is
greatly diminlished., The convergence of the iteration method
described in the preceding section when applied to this inte-
gral equation turned out to be very satisfactory.

10, Comparison with Other Methods

A1l other analytical methods proposed for solving the
boundary value problem of section 2 involve an expanslion of
the potential function o(x,y) in terms of a parameter char-
acterizing either the deviation of the flow from the upiform
flow (such as the thicxness parameter of a profile) or the
deviation of the flow from an incompressible flow (such as
the stream Mach number), These methods also involve succes-
sive integrations of linear partial differential equations.
Methods based on such expansions necessarlly suffer from the
disadvantage that the convergence becomes worse as the devi-
ation from the "undisturbed state" inoreases, that is, pre-
cisely as the influence of compressibility becomes more pro-
nouncsd, In the present method the incompressidle (i,e.,
infinitely slow) flow or the uniform flow (flow past a
straight segment) is in no way distinguished, and the rate of
convergence should not depend t00 much upon the value of the
barameters b, OT Apgx-

Furthermore, in all other methods the speed at inflinity
and therefore the stream Mach number are prescribed, and
there is no way of telling whether this value of the stream
Mach number does not exceed the critical Mach number. If
this 1s the case, the flow becomes partly supersonlic, and
the convergence usually breaks down, In the present method
it is possible to prescribe the maximum local Mach number
Mpax and the value of Mpax @ay be chosen arbitrarily close
to unity,

The preceding remark applies also to a purely numerical
treatment of the nonlinear squation (15) (see a recent Paper
by Bmmons, reference 8, and the literature quoted thereing
This treatment consists in replacing the differential equa-
tion by a nonlinear difference equation which is solved by
the relaxation msthod, :
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11. On a Velocity Correction Formula by Garrick and Kaplan

The functional equation to which the pressure distribdbu-
tion problem has been reduced throws new light on a veloclty
correction formula recently proposed by Garrick and Kaplan.
(see reference 9.,) These authors derived their "gesometrioc
mean formula' using an analogy between compressible and in-
compressible flows and some ideas from the theory of sigma-
monogenic funotions, In order to write this correction for-
mula in the notatione of the present papen let A(M,) denote

the value of qga corresponding to the stream Mach number M,
and set

Q; (a*) = Q@) | (765)

Then the Garrick-Kaplan formula reads

Q [A(Mm) <f;>1]

<?lq;>c BN (M) ] | e

Here (Q/qa)c denotes the ratio of the speed at a point of

a profile to the speed at infinity for a compressible flow
of stream Mach number M, and (q/q,); is the same ratio

‘for_an incompressible flow (i.e,, for a flow with M, = 0).

For the case of a fluid obeying the linearized pressure-
density relation with Y = -1 formula (76) takes the form

1 - Af
G, = (), T, o

wheres

A= A(M) = - o (78)

1+,/1 - M3
[«

This is the Kirmdn-Tsien velocity ocorrection formula. (Sees
reference 6,)

It 1s immediately seen that formula (76) would be rigor-
ously correct if the funetion o = f,(w) resulting from the
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conformal mapping of the profile into a circle were the solu-
tion of the funoctional equation (60) for the desired value

of M_ . The situation may be summed up as follows: The dif-
ference between the relative velocity distribution (the dis-
tribution of the values q/q_ ) in an incompressible flow

and in a compressible flow of stream Mach number M, 1is due
(a) to the difference between the values of the corresponding
mapping functions o = f(W), and (b) to the fact that the way
in which the velocity distribution is determined by the map-
ping function f(w) depends upon the stream Mach number,

The velocity correction formula (76) takes into smccount the
factor (b) but fails to include the effect of factor (a).

On the basis of computations cerried out for the case
Y = -1 (see reference 1, figs. 1 and 2) it may be concluded
that formula (76) will yield values of q/q_ which are %00

low, Therefore the values of the critical Mach number
(stream Mach number for which M . = 1) computed by formula

(76) may be erpected to be higher than the actual values,
CONCLUDING REMARKS

1. The method presented in this report reduces the
problem of finding the velocity and pressure distribution
along a preassigned symmetrical profile to the solution of &
certain mappling problem which in turn is reduced to the solu-
tion of a functional equation by the method of successive ap-
proximations, Though the mathematical difficulties pesculiar
%o the nonlinear differential equations of fluid dynamics ars
eliminated by this method, the practical application of this
brocedure requires the numerical solution of linear partial
differential equations with varisble coefficients, This
last problem presents no theoretical difficulties, dut resally
efficient methods for its solution are still in the process
of development, Upon this development, which is intimately
connected with the design of automatic computing machines,
hinges the practical applicability of the present method.

2, The extension of the present method to the case of
circulatory flows and to the case of flows with locally
supersonlc regions will require a more profound investiga-
tion of the "mappings conformal with respect to a compress-
ible flow" introduced by the author in a pravious repord,
(See reference 2,)
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3. The author takes the opportunity to draw attention
to the similarity between the method given in reference 2
and the one given (from & different point of view) in a
paper by S. A. Chrigtianovitech (reference 17). In the
author's opinion, however, the paper by the noted Russian
fluid dynamicist contains an error., In the terminclogy
introduced in reference 2, a statement made by Christianoviteh
could be formulated as follows! "To every subsonic ocompress-
ivtle flow past a profile P thers exists s conjugate (modulo
1) incompressible flow paw: anather prefile P!'." The author

believes that this statement is mislesdimg and that, for this

reason, Christisnovitch?s method must fail in the case of
circulatory flows,

Brown University, .
Providence, R. I., Beplenbar 1948,

APPaxmat %
CONCERNING THE COMPUTATION OF THE FUNCTION §

A, Yo matter which method i1s used for integrating the’
linear partial differential equation (50) satisfied by &
it is convenient first to introduce the auxiliary complex
variable 2 = X + iY Dby the relation

z2 =t + % (A1)

This transformation takes the domain [{| > 1 1into the do-
main exterior to the straight segment (-1, +1)., The func-
tions @& and T may bPe considered as functions of X and
T, and in view of the conformaelity of the transformation
(A1) @ satisfies the equation

_a__é_@_ +.a._°l<l‘.-a_g>=0 (AZ)
aX \T 3XxX 8Y \T 3Y

Furthermore, by virtue of (57)
o (%, -Y) = ¢ (X,Y) (A3)
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This implies that

2% = 0 (A2)
Ty = o

for X < -1 and X > 1. But the same relation holds for
-1 < X< 1l by virtue of (54)., At infinity equation (55)
implles that

-1} 1] 0 7 A5
3% —> 1 3Y —_— a8 —_—> ® ( )

The dstermination of @ requires the integration of equa-
tion (A2) in the half-plane Y > 0O under the boundary con-
ditions (A4) and (a5),

A numerical or mechanical integration can be performed
in & finite domain only. Therefore the upper half-plane is
replaced by a sufficiently large rectangle with the vertices
(-4, 0), (-4, B), (4, B), (&, 0) and the condition (A5) is
replaced by the boundary conditlions

d (*A, Y) = *a, ® (X, B) = X (A8)

(Another way of passing to a finite domain would consist of
a conformal transformation, say of |{| > 1 1into |{} <1.)

B, The boundary value stated formerly can be solved by
means o0f electrical models. One method 1s that of the elec-
trolytic bath due to Taylor and Sharman (references 10 and 11),
the ot?er that of network analogies due to Kron {(references 12
and 13).

G, In order to solve equation (A2) numerically it is
first replaced by a difference equation. (The possibility
of reducing (A2) to an integral equation will not be dis-
cussed here,) Let X5, Y, be a point of the domain con-
sidered and SeAt X1 = XO + 6' Yl = Yo, XQ = XO. Ya = Yo + &.
Xz = X5 -8, Y3 =Y, X4 = X,, Yg =Y, - 8§, & being a small
positive number, Denote the value of a function O at
(xi, yi) by Q3 and replace the expressions

8 2
%%.o’ (%%'o’ <%f% o’ (gyg>o



NACA TN No, 1012 356

by -
L -0, 0,-Q, 0 +0,-20, 0 +Q, -2Qq,
¥ ? ]

25 28 82 ' 52

respectively, Bquation (A2) can be rewritten in the form

4T (B, + B+ Byt Dy 405) = (T, = T ) (s = pg) + (T5- Ty) (g -.py)

or
®, = B,®, + B0, + B,0, (A7)
where
4T, - T, + T, 4T, - T+ T,
By = Bz =
16 T, 16 T,
\ (a8)
. - 4T+ T, - T, . . aT + T, - T,
° 16 T, ¢ 16 T, J

If the point O 1lies on the line Y = 0, then the point
4 lies outside of the domain considered and according %o
(A3) the preceding formulas must be changed to

ﬂ
. . 4T - T, + T, . -1
1 - 3—'2"
16 T, > o)
: A9
4T, + T, - T,
Py = 16 T By = O
o

Note that the following relation always holds

By + By + B, + B, =1

and that
B, =0 (A10)

if 8§ is sufficiently small,
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Since squation (A2) is invariant with respect to rota-
tion, the same difference equation would be obtained if thqm__
square formed by the points 1, 2, 3, and 4 would not have
its sides parallel to0o the coordinate axea, ‘Therefore, 1%
is easy to compute & at lattice points which do not form a
uniform net, In fact, it is advisable to use more points
near and on the segment (-1, 1) for here the function T
wlll change rapidly and the values o0f @$ on this segment
are the ones actually needed,

A simple computation shows that if the function

¢ (X, ¥) = }; ey X0 ¥

satisfles the differential equation (42), then the polynomial
3
oo ¥ olox + Cg, ¥ + caoxa * 04, XY + o557

satisfies the difference equation (A7), It aleo is known .

that solutions of the difference equation converge toward _
the solution of the differential equation as the parameter
§ approaches zero.

D, The boundary value problem for the difference equsa-
tion derived above can be solved either by a rigid iteration
scheme, say by Liebmann's method (references 14 and 15) or
by a relaxation method, Concerning the latter, reference is
made t0 a recent paper by Emmons (reference 8) and to the
literature quoted therein, The iteration methods require ) o
more computational labor than the consequent application of
the relaxation method and the use of modern computing devices
becomes imperative, On the other hand, the instructions for
computing become simpler and the whole problem can be "coded"
once and for all on an automatic computing machine. An at- e
tempt was made to solve equation (A2) by Liebmann's method
using the I.B.M. Automatic Sequence Controlled Calculator,
This attempt could not be considered successful because of
the slowness of convergence, It is posgible that convergence
could be improved by using either a difference equation in-
volving higher differences or s different iteration procedure,
However, the design of automatic computing mechines is now in
the process of rapid development, and the speed at which
these machines perform will doubtless be increased at =a



NACA TN No, 1012 37

tremendous reste. This trend will, on the one hand, reduce
the importance of th: rate of converscnce and, on the other,
Pt A premium on the simplicity of the computational proced-
ure.

B. In this section, the convergence of Liebmann's itera-
tion method when apvlied to the bouadary value problem for

the differcnce equations (A7) to (A3) will be proved. The
proof is vatterned after the one given by Loewner for the
case of the first boundary value problem for Laplace's dif-
ference equation. (See reference 15, )

Let P3, P, ¢« « «, Py ©De the points at which the val-
ues of @ (denoted by D,, 3, . . ., Py) are to be computed.

It will be assumed that among the four neighboring points of
the point P, there is at least ons boundary point (i.e., a
roint with either x = £4 or Y = B), and that one of the

four nelghboring points of P, is Pn_l(n =2, 8, .. ., N),

Liebmann's procedure for finding th? galues P; is as fol-
lows. Assume some trial values &, ° R ®3(°). v e ¢N(°).
Go over the points P; in the indicated order correcting the
value @i(°) using equations (47) and (48) (or equations
(A7) and (A8) if P; 1lies on the X-axis). In applying these
formulas use corrected values 0of ¢ whenever possible., In

NES TR €
(a), ¢1(3)-

1
this way new values @1( ). ] are obtained.

Repeat this process to obtain the values Q4
It i8 asserted that as n—— @ ¢1(n converges toward the

desired value ¢i‘

In what follows 1%t is assumed that the net is so fine
that condition (A10) is setisfied. Plainly

@i(l) = Z Bij @J(O) * B:’LO (a11)
i
and, in general,

o ™) - }2 Bi1 2, v 5y, (a12)
J
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where the constants Bi are linear combinations of products
of the B; defined by 2A8) and (A9) and the constants £,/
depend upon the boundary conditions, Thus

By 2 0 (413)
Now assume that the boundary conditions read
= 0 for X = *A and for Y = B
and that Qico) =1, i=1, 2, ... XN, It is easily seen

1 (o0}
that in thie case all By, vanish and that @1( ) < &, R

(3) (o)
P < &5 v «+ » » « Since, in the case considered

2, ) - zz Bij
J

it follows that there exists a constant b such that

}; Byg<®<1,1=1,2 ..., ¥ (a14)
J

Since, in the general case

@i(n) = z BU @J(n—l) + ky (aAr5)

then from (Al2) and (Al15) it follows that

0, ) 0, L N s (o) - 0, 0V) e

Set

(n) {n~1)

o i

From (Al6) and (Al3) it follows that
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d.n+1 < d.n mg.x Z ﬁij

go that by (Al4)

dn+1 <D dn
and hence
n-
d, <0 i, — 0 as n—> o (a18)
Thus the limits
¢, = 1lim 8, (2 _ (419)
nﬁ o e —
exisgt, since
-3
(n+m) (n) < o (n+m=-p) o (n+m-p=-21)
i - ®i i I |
p=0

n

m-1
n+m-p=-1 nj - p® d,b
< b dyb <
Zi G = b T <13
p=0

Plginly
&, = zz Byy &5 + Ky (A20)

which shows that the @1 satisfy both the boundary condil-
tions and the differencs equation,

Also, from (A12) and (420) it follows that
(n+2) (n)
o, -0, = Z By <<I>J - a>j>

so that by (A13) and (A14)
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m:x ¢i(n+1) -8 | < mfx ¢1(n)‘ oy (A21)

This remark establishes the uniqueness of the solution,
Finally, if all differences ¢1(n) - @i(n“) are posi-
tive (negativae), then by (416) and (Al3) eo are all the dif-

¢(n+1) - ¢i<n)’ This implies that all values @in

lie below (above) the desired values ;.

ferences

To summarize, the following statements are seen to be
true .

(1) Liebmann's method converges,

(i1) Both the maximum corrections ’Qi(n*l) - @i(n)

and the maximum differences @1(n) - Oy l decrease monoton-
ically,

(141) If all corrections @i(n+1) - Qi(n) are positive
{(negative) all values Qi(n+1) are smaller (larger) than the

desired values,

If no assumptions concerning the order of the points Py
are made, a slight refinement of the argument showe that
statements (i) and (iii) remain true and {(ii) holds if the
words "decrease monotonically" are replaced by "do not in-
crease, "

APPENDIX II
CONCERNING TEE MAPPING FROM THE Z-PLANE INTO THE (-PLANE

A, This appendix contains the proof of two assertions
concerning the transformation (62) made in section 7, First,
the independence of the line integrals on the right-hand side
of (62) on the path of integration will be established, Since
® satisfies equation (50) there exists a function V(E,n)
such that
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@E-“-T\l!-n
(A22)

., = T ‘d’g

n

(The function V¥ i proportional to the stream-function

of the compresgible flow in the {-plane.,) Since log w* is
an analytic function of {, & and V¥ may be considered as
functions of log q* and 6. Since equations (A422) are in-
variant with respect to conformal transformations, it fol-
lows that

¥ _ o __ 2V
d 2 log q*

(A23)

— 08 . _go¥
d log q* 36

By introducing instead of log q* the new variable g con-
nected with log q* by equation (3) and using equation (4),
the following system is obtained

2 _ poa ¥
96 p da
(A24)
20 poll - ¥%) 3y
dq Pa 36

(These are the well~known Chaplygin equations.)

Now (62) may be written in the form

a P p
x = cf—é’- {(co: 8d¢ -—p-g sin e\llg> at + <cos Gén--‘sg--ﬂin G\U.n)l‘n}

a p P
=0 =9 -3 9
y fq {(sin Btbg'l' . cos B\Vg) at + (sin 6¢ﬂ+ ” cos Gﬂ!n>dﬂ}

or
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ix qu:(cOBed\‘b -—pt—sined\ll>

dvy = C a9 _EQ.
y J/‘ q.@in 0d o- "Rocos 64 w)

-

and equations (A24) are precisely the conditions that these
i?tegrals be independent of the path (¢f. reference 16, p.
8).

B. It will now be shown that the mapplng inverse t0
(62) is conformal with respect to the metric (34), (385). By
use of the relations

ox p an  3x ot
2t~ Yoy’ an T T oy
3y _ an ¥y 14
3 -7 33 an U e
3 = d(x,y)
a(¢ ,n)

together with (62) and (67), the following equations are ob-

tained
3t . (02 + 62)(/1 - M2 sin 83, + cos eég)
ax 4 T n

%é.a (Qz + Q;)(—Jg - M" cos 6dn + sinG@g )
%% = (0f + @%)(-~£ - ¥% ein 00g + cos 8%n)

on a a 2
3; (q)g + Qn)(J{ - M ocos B@i + gin 6¢n)
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43

It is seen that these partial derivatives satisfy the condi-

tions
an an
3k _ S22 3y ~ %13 3a
ox
2
Jé11€az -~ €12
3an _ en
Qﬁ_g g1z dy €22 3% cee-
oy a
€1:28223 ~ &a=z

where the are given by (35).

€3y

Beltrami equations expressing the conformality of the mapping

€= &x,v), n

with respect to the metric (34).

These are the well-known

= n(xny)



NACA TN No. 1012 44

10,

1l.

REFERENCES

Bers, Lipman: Velocity Distribution on Wing Sections of
Arbitrary Shape in Compressible Potentiel Flow, I -
Symmetric Flows Obeying the Simplified Density-Speed
Relation, NACA TN No. 1006, 1946.

Bers, Lipman: On a Metheod of Constructing Two-Dimensional
Subsonic Compressible Flows around Closed Profiles.
NAQA TN No. 969, 1945.

Computation of Oertein Functione Oceurring in the Theory
of Compressible Fluids. Bur. of Ships Computation
Project, Rep. No. 16, 1945.

Chaplygin, S. 4.: On Gas Jets. Scientific Memoirs,
Moscow Univ., Math., Phys. Sec., vol. 21, 1902, pp. 1-
121. (Eng. trane., pub. by Brown Univ., 1944.) (Also
NACA TM No. 1063, 1944)

Bateman, H.: Partial Differentlial Hquations of Mathemat-
1ical Physics. Cambridge University Press, 1932.

von Kédrmén, Th.: OCompressibility Effects in Aerodynamics,
Jour. Aero. Sei., vol. 8, no. 9, July 1941, pp. 337~
358,

Taien, Hsue-Shen: Two-Dimensional Subsonic Flow of Com-
pressible Fluids. Jour. Aero. Sei., vol. 6, no, 10,
Aug. 1939, pp. 399-407.

Emmons, Howard, W.,: The Numerical Solution of Compress-’
ible Flow Problems. NACA TN No. 932, 1944.

Garrick, I. BE., and Kaplan, Carl: On the Flow of a Com-
pressible Fluid by the Hodograph Method. I ~ Unifica-
tion and Extension of Present-Day Results. NACA ACR
No. L4024, 1944,

Taylor, G. I., and Sharman, C, ¥F.: A Mechanical Method
for Solving Problems of Flow in Compressible Fluids,
Proc. Roy. Soc., London, ser. A, vol, 121, 1928, p.194.

Taylor, G. I,: Strdémung um einen Kdrper in einer Kompres-
Blblen Fliesigkeit. 2Z.f.a.M.M,, vol. 10, no. 4, Aug.
1930, pp. 334-345.



NACA TN No. 1012 45

12. Kron, Gabrisl: Egquivalent Circuits of Compressible and
Incompressible Fluid Flow Fields. Jour. Aero. Sci.,
vol. 12, no. 2, April-1945, pp. 221-231.

13. Kron, Gadbriel,and CGarter, G. K.: Numerical and Network-
Analyzer Tests of an Equivalent Circuit for Compress-
ible Fluid Flow. Jour. kero, Sei., vol. 12, no. 2,
April 1845, pp. 232-234.

14, Leibmann, Heinrich: Die angenaherte Ermittelung
harmonischer Funktionen und konformer Abblildungen.
Sitzungberichte der Mathematiche-physikalischen Klasse
der Bayerischen Akademie der Wissenechaften (M8nchen),
1918, Heft 1, pp. 385-416.

15, Loewner, Charles: Die Potentialgleichung in der Ebene.
Ch. 16, pp. 686-734 of Die Differsential and Integral-
gleichungsn der Mechanik wnd Physik, Phillipp Frank
and Richard v. Miges, ed., Friedr., Viewig and Sohn,
24 ed. (Braunschweig), 1930.

l6. Gelbart, Abe: On & FPunction-Theory Method for Obtaining
Potential-Flow Patterns of a Compressible Fluid.
NACA ARR No. 3G27, 1943.

17. Christianovich, 8., A.,: The Flow of Gases-around Bodies

at High, Subsonic Speed. Trudy Central jnogo hero-
Gidrodinamicheskogo Inst., no, 481, 1940, p. 52.
(Rugsian)



NACA TN No. 10123

3
By , s

" TABLE 1, - g*2 and T as functions oi"‘i_l:l.l2

1-4° (q)® T 1% (a%)® T
0.00 1.00000. ;.7 , 0.00000 0.34 0.97656 0.81087
0.01 1.00000 }. 0.01577% Wi 0.5 0.97432 0.52415
0.02 -3.400000 . | 0.Q3183 ‘[ 0.36 0.97194 0.53750. || , -
0.08 | -0.99999 | ‘0,04728 0.37 0.96939 0.55072
0.04 0.99996 -0.08302 0.38 0.96670 0.56380
0.05 | 0.99993 0.07875 0.39 0.96383 0.57674
0.06 :0,99988 ° | ' 0.09446 0.40 0.96078 0.58954
0.07 0.99981 0.11014 0.41 0.95758 0.60219
0.08 0.€9971 | 0.12580 0.42 0.95417 0.61469
0.09 | :'0,99959 0.14142 0.43 0.95057 0.62703
0.10 | 0.99944 0.15701 0.44 0.94676 0.63922
0.11 * |’ 0.99926 0.17256 0.45 0.94275 0.65185
0.12 0.99903 0.18807 0.46 0.93852 0.66312
0.13 0.99877 0.20353 0,47 0.93406 0.674882
0.14 0.99846 0.21894 0.48 0.92936 0.68835 .
[ .
0.15 0.99810 0.23429 0.49 0.92443 0.69772
0.18 0.99789° 0.24959 . 0450 '0.91923 0.70891.
0.17 0.29722- | o0.26482 |} 0.5L 0.91378 .0,71992
0.18 0.99670 0.27999 | 0.58 0.90806 0.73075
0.19 0.99611 0.29509 0.52 0.90205 -0+74140
0.20 0.99545 0.31018 0.54 0.89575 0.75187 |
0.21 0.99472 0.32506 0.55 0.88915 0.76215
0.22 0.998391 0.33993 0.56 0.88223 0.77223
0.23 0.99302 0.35471 0.57 0.87499 0.78213
0.24 0.99204 0.36940 0.58 0.86741 0.79183
0.25 0.99098 0.38400 0.59 0.85948 0.80134
0.26 0.98982 0.39851 } 0.80 0.85119 0.81064
0.27 0.98856 0.41291 0.8l 0.84252 0.81975
0.28 0.98720 0.42722 0.62 0.83346 0.82865
0.29 0.98573 0.44141 0.83 0.82401 0.83734
0.30 0.98415 0.45550 0.64 0.81413 0.84583
0.31 0.98244 0.46947 0.85 0.80382 0.85410
0.32 0.98061 0.48332 0.66 0.79306 0.86218
0.33 0.97865 0.49708 0.87 0.'78184 0.87001
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TABLE 1. (Continued)

\1-MR (a%)® T

0.68 0.77014 0.87765
0.69 0.75794 0.88508
0.70 0.74523 0.89226
0.71 0.73198 | ' 0.89923
0.72 0.71817 0.90588
0.73 0.70380 0.91251
0.74 0.88882 0.91881
0.75 0.87324 0.92489
0.76 0.65%01 0.9307%
0.7 0.64012 0. 95635
0.78 0.62255 0.94173
0.79 0.80427 0.94688
0.80 | ~0.58525 0.95180
0.81 0.56546 0.95648
0.82 0.54490 0. 96093
0.83 0.52851 0.96514
0.84 0.50127 0.96911
0.85 G.47814 0.97285
0.86 0.45411 0.97634
0.87 0.42913 0. 97960
0.88 0.40318 0.98262
0.89 0.37618- | 0.98540
0.90 0:34815 0.98793
0.91 0.31900 0.99023
0.92 0.28872 0.99228
0.93 0.25726 0.99409
0.94 0.22458 0.99586
0.95 0.19062 0.99699
0.96 0.15535 0.9980%7
0.97 0.11870 0.99892
0.98 0.08063 0.99952
0.99 0.04108 | 0.99988
1.00 0. 00000 1.00000

47
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TABLE 2. ]1-ME and T as functions of g*%

(a%)® {116 T (q%)® 147 T
0,000 1.00000 1.00000 0.170 0.95589 - 0,99768
0.005 0.99880 1.00000 0.175 0.95448 0.99750
0.010 0.99760 0.99999 0.180 0.95305 0.99734
0,015 0.99639 0.99998 0:185 0.95162 0.99718
0.020 0.99518 0.99997 0.190 0.95018 0.99701
0.025 0.,99396 0.99996 0.195 0.94873 0.99683
|  0.030 0.99274 0.99994 0.200 0.94728 0.99685
0.035 0.99151 0.99991 0.205 0.94581 0.99646
0.040 0.99027 0.99989 0.210 0.94434 0.99626
0.045 0.98903 0.99986 0.215 0.94286 0.99606
0.050 0.98776 0.99982 0.220 0.94137 0.99588
0.055 0.98652 0.99978 0.£25 0.93987 0.99564
0.080 0.98528 0.99974 0.230 0.93837 0.99542
0.0865 0.98400 0.99969 0.235 0.93685 0.99519
0.070 0.98273 0.99964 0.240 0.93533 0.99496
0,075 0.98145 0.99959 0.245 0.93380 0,99471
0.080 0.98016 0.99953 0.250 0.93226 0.99446
0.085 0.97887 0,99946 0,255 0.93070 0.99421
0.090 0.97757 0.99939 0.260 0.92914 0. 99394
0.095 0.97627 0.99932 0.265 0.92758 0.99367
0.100 0.97496 0.99924 0.270 0.92600 0.99339
0.105 - 0.97364 0.99916 0.875 0.92441 0.99311
0.110 0.97232 0.99908 0.280 0.92281 0.99281
0.115 0.97099 0.99899 0.285 0.92120 0.99251
0.120 0.96965 0.99889 0.290 0.91958 0.99220
0.125 0.96831 0.99879 0.295 0.91796 0.989188
0.130 0.96696 0.99868 0.300 0.91632 0.99155
0.135 0.96560 0.99857 0.205 0.91467 0.99121
0.140 0.96424 0.99846 0.310 0.91301 0.99087
0.145 0.96286 0.99834 0.315 0.91134 0.99051
0.150 0.96148 0.99821 0.320 0.90966 0.99015
0.155 0.96010 0.99808 0.325 0.90797 0.98978
0.160 0.95870 0.99794 0.330 0.,90627 0.98940
0.165 0.95730 0.99780 0.335 0.90455 0.98900
0.340 0.90283 0.98860
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TABLE 2. (Continued).
2 (r———

(a*) Y1-u° T (q)® 112 7

0.345 0.90109 0.9881¢% 0.500 0.84056 0.86933
0.350 0.89935 0.98777 0.508 0.83835 0.96847
0.355 0.89759 0.98734 0.510 0.83812 0.96760
0.360 0.89582 0.98630 0.515 0.83387 0.96871
0.365 0.88403 0.98845 0.520 0.83160 0.96579
0.370 0.89224 0.958598 0.525 0.82931 0.06486
0.375 0.89043 0.98551 0.530 0.82701 0.96320
0.380 0.88881 0.98502 0.535 0.82468 0.96293
0.385 ©.88677 0.98453 0.540 0.82232 0.96193
0.390 0.88492 0.98402 0.545 0.81995 0.,96081
0.395 C.88306 0.88350 0.550 0.81756 0.959886
0.400 0.8811¢9 0.98256 0.555 0.81514 0.95880
0.405 0.87930 0.988242 0.560 0.81270 0.95770
0.410 0.87740 0.98186 0.565 0.81083 0.95659
0.415 0.87549 0.98129 0.570 0.80774 0.95545
0.420 0.87356 0.98070 0.575 0.80823 0.95428
0.425 0.87161 C.88011 0.580 0.80269 0.95308
0.430 0.862866 0.97949% 0.585 0.80013 0.95188
0.435 0.86768 0.9788%7 0.590 0.79754 0.95061
0.440 0.86569 0.97823 0.595 0.79492 0.94933
0.445 0.86369 0.97757 0.600 0.79228 0.,94802
0.450 0.86167 0.97691 0.605 0.'78961 0.94668
0.455 0.85964 0.97622 0.610 0.78691 0.94531
0.460 0.85758 0.97552 0.815 0.78418 0.94381
0.465 0.8565652 0.97481 0.620 0.78148 0.94247
0.470 0.85343 0.97408 0.625 0.77863 0.,94101
0.475 0.85133 0.97333 0.830 0. 77581 0.93950
0.480 0.84921 0.9'7256 0.635 0.77296 0.93'798
0.485 0.84708 0.97178 0.640 0.77007 0.93639
0.490 0.84492 0.97098 0.645 0.767156 0.93477
0.485 0.84275 0.97016 0.850 0.76420 0.93312
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TABLE 2. {Continued)

NACA TN No. 1013

(q#)® \2-u2 s (q*)® \i-u® T
Q.6855 0.78121 © 0,93142 0.855 0.59546 0.80644
0.660 0.75819 0.929869 0.860 0.58936 0.80073
0.6865 0.75513 0.92791 0.865 0.58309 0.79479
0.870 0.75203 0.92609 0.870 0.57663 0.78859
0.675 0.74889 0.98422 0.876 0.56998 0.78212
0.680 0.74571 0.92231 0.880 0.56313 0.77535
0.685 0.74249 0.92035 0.885 0.55605 0.7682%
0.690 0.73923 0.91833 0.890 0.54874 0.76086
0.895 0.73592 0.91627 0.89% 0.54116 0.75%3807
0.700 T 0.,73257 0.91415 0.900 0.53381 0.74488
0.705 0.72918 0.91198 0.905 0.585156 0.738806
0.710 0.72573 0.80975 0.910 0.51666 0.78716
0.715 0.72224 0.90747 0.915 0.50781 0.71758
0.720 0.71870 0.90512 0.920 0.49858 0.70730
0.725 0.71511 0.90271 0.925 0.48886 0.696843
0.730 0.71146 0.90023 0.930 0.47867 0.68483
0.735 0.70775 0.89768 0.935 0.46793 0.67841
0.740 0.70399 0.89507 0.940 0.45655 0.85905
0.745 0.70017 0.89238 0.945 0.44446 0.64460
0.750 0.89629 0.88962 0.950 0.43152 0.62890
0.755 0.69235 0.88877 0.955 0.41761 0.61171
0.760 0.888%4 0.88385 0.960 0.40252 0.59R74
0.765 0.68427 0.88084 0.965 0.38600 0.5%Y159
0.770 0.88012 0.87774 0.970 0.36769 0.54767
} 0.775 0.87590 0.87454 0.975 0.32704 0.52017
0.780 0.67160 0.87125 0.980 0.32320 0.48774
0.78b6 6.66723 0.86786 0.985 0.29471 0.44806
0.790 0.686277 0.86438 0.990 0.26852 0.39636
0.795 0.65823 0.86075 0.995 0.20623 0.31944
0.800 0.85380 0.85703 1.000 0.00000 0.00000
0.805 0.684888 0.85318
0.810 0.64406 0.84921 |f
0.815 0.83914 0.84510
0.820 0.63411 0.84085
0.885 0.62897 0.83645
0.830 Q.62371 0.83180
0.835 0.61833 0.82718
0.840 0.61283 0.82228
0.845 0.60718 0.81720
0.850 0.80140 0.81193
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TABLE 3. Myp/p s B/Pys and q/4, as functions of q*e

5T :
3
(q; ) M /o 4’0 p/ po a/ a‘o
0.00 0.0000 1.0000 1.0000 0.0000
0.02 0.0982 0.9952 0.9933 0.0981
0.04 0.13982 0.9904 0.9865 0.1389
0.06 0.1711 0.9855 0.9797 0.1706
0.08 0.1982 0.9806 0.9729 0.1974
f 0.10 0.20224 0.9757 0.96860 0.2213
0.12 0.2445 0.9707 0.9591 0.2430
0.14 0.2650 0.9657 0.9522 0.2631
0.16 0.2844 0.8607 0.9452 0.2821
’f 0.18 0.3028 0.9556 0.9382 0.3000
0.20 0.3204 0.9506 0.9311 0.3171
.0.28 0.3374 0.9453 0.9240 0.3336
0.24 0.3538 0.9401 0.9168 0.3494
0.26 0.3678 0.9348 0.9086 0.3648
0.28 0.3852 0.9295 0.9024 0.3795
0.30 0.4005 0.9241 0.8951 0.3942
0.32 0.4154 0.9187 | 0.8878 0.4083
h 0.24 0.4300 0.9132 0.8803 0.4222
[ 0.36 0.4444 0.9077 0.8728 0.4358
C.38 0.4587 0.9021 0.8653 0.4492
0.40 0.4728 0.8965 0.8576 0.4625
0.42 0.4867 0.8908 0.8500 0.4754
0.44 0.5005 0.8850 0.8422 '0,4883
0.46 0.5143 0.8791 0.8344 0.5011
0.48 0.5281 0.8732 0.8265 0.5138
0.50 0.5417 | ©O.8678 0.8185 0.5263
0.52 0.5554 0.8611 0.8104 0.5388
0.54, Q.5890 0.8549 0.8022 0.5518
0.56 0.5827 0.8486 0.7940 0.5637
0.58 0.5964 0.8422 0.78586 0.5760
-0.80 0.6102 0.8357 0.7711 0.5884
0.62 0.6240 0.8291 0.7685 0.6008
0.64 0.8380 | . 0.8224 0.7598 0.6132
0.66 0.6520 0.8155 0.7509 0.6256
0.68 0.8663 0.8085 0.7418 0.6382
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TABLE 3. (Continued)
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z

*

(a*) M /N »/p, a/a,
0.70 0.6807 0.8014 0.7326 0.6508
0.72 0.6953 0.7940 0.7232 0.6636
0.74 0.7102 0.7865 0.7136 0.6765
0.76 0.7254 0.7788 0.7038 0.6896
0.78 0.7409 0.7709 0.6937 0.7029
0.80 0.7568 0.7626 0.6834 0.7164
0.82 0.7733 0.7541 0.6727 0.7303
0.84 0.7903 0.7454 0.6617 047447
0.88 0.8079 0.7360 0.6501 0.7600
0.88 0.8264 0.7263 0.6381 0.7746
0.90 0.8459 0.7180 0.6253 0.7906
0.92 0.8669 0.7049 0.6118 0.8076
0.94 0.8897 0.6927 0.5970 0.8260
0.96 0,9154 0.6791 0.5806 0.8464
0.98 0.9483 0.6627 0.5609 0.8708
1.00 1.0000 0.6342 0.5274 0.9119
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TABLE 4. q-lt-2 as a function of M

M (a%)® u (a%)*
HMO.OO 0,0000 0.50 0.4391
0.02 0.0008 0.52 0.4682
0.04 0.0033 0.54 0.4975
0.086 0.0075 0.56 0.5268
0.08 0,0140 0.58 0.5561
0.10 0.0207 0.60 0.5853
0.12 0.0298 0.62 0.6142
0.14 0.0404 | 0.64 0.6439
0.16 0.0526 0.66 0.68712
0.18 0.0663 0.68 0.6981
0.20 0.0814 0.70 0.7262
0.22 0.0979 0.72 0.7528
0.24 0.1158 0.74 0.778%7
0.26 0.1350 0.78 0.8039
0.28 0.1553 0.78 0.8280
0.30 0.1776 0.80 0.8512
0.34 0.2233 0.84 0.8941
0.36: 0.2477 0.88 0.8136
0.38 0.2732 0.88 0.9317
' 0.40 0.2994 0.80 0.9483
0.42 0.3263 0.92 0.96832
0.44 0.35638 0.94 0,9763
0.46 0.3819 0.96 0.9872
r 0.48 0.4103 0.98 0.2954
1.00 1.0000
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Fig. 8.
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